martes, 6 de octubre de 2015

Historia de la Computadora

Historia de la computadora
1614
John Napier
John Napier (1550-1617) publicó un texto sobre el descubrimiento del logaritimo. Napier también inventó el sistema de Rods (referido como Rods de Napier o los huesos de Napier). Esto hizo que fuera posible multiplicar, dividir, calcular la raíz cuadrada y cubica girando los rods, y colocándolos en placas especiales.






1623
Wilhelm Schickard
Wilhelm Schickard (1592-1635), en Tuebingen, Wuerttemberg (ahora Alemania), Creó el "Reloj Calculador". Este instrumento era capaz de sumar y restar 6 digitos, y en el caso de que el resultado sea mayor que 6 digitos, tocaba una campana. Las operaciones eran hechas mediante una manivela, que giraba y los números cambiaban, como en el contador K7 de los nuestro días.






1642
Historia de la computación - La Pascalina
Francés matemático, Blaise Pascal construyó la máquina que sumaba (la “Pascalina”). A pesar de ser inferior al "Reloj Calculador" del Schickard (ver 1623), la máquina de Pascal se hizo más famosa. El vendió docenas de ejemplares de la máquina en varias formas, logrando procesar hasta 8 dígitos.
1672
Gottfried Wilhelm Von Leibnitz
Después de muchas tentativas, finalmente es inventada en 1672 la primera máquina de calcular capaz de desarrollar las cuatro operaciones matemáticas (suma, resta, división y multiplicación) y además la raíz cuadrada. Esa gran conquista fue atribuida al matemático Gottfried Wilhelm Von Leibnitz que mejoró la máquina de Pascal y obtuvo la calculadora universal.





1801
Historia de la computadora - El telar automático



El telar automático era un telar con entrada de datos por medio de tarjetas perforadas para controlar la confección de tejidos y sus respectivos dibujos. Fue creado en 1801 por Joseph Marie Jackuard y puede ser considerada la primera máquina mecánica programable de la historia.



1822
Máquina Diferencial
La Máquina Diferencial fue idealizada por el profesor y matemático de la Universidad de Cambridge, Charles Babbage, en 1822. Era un dispositivo mecánico basado en ruedas dentadas capaz de computar e imprimir extensas tablas científicas. A pesar de tantas ventajas, esta máquina nunca llegó a ser construida a causa de las limitaciones tecnológicas de la época.




1834
George Scheutx, de Estocolmo, produjo una pequeña máquina de madera, después de leer una pequeña descripción del proyecto de Babbage.
1848
George Boole
El Inglés Matemático George Boole inventa el álgebra binaria booleana, abriendo el camino para eldesarrollo de computadoras casi 100 años después.









1878
Ramón Verea
Ramón Verea, viviendo en Nueva York, inventa una calculadora con una tabla de multiplicación interna; es decir más fácil que girar engranajes u otros métodos. El no estaba interesado en producirla, sólo quiso mostrar que los españoles podían inventar como los americanos.


1885
Una calculadora de multiplicación más compacta entra en producción masiva. La producción es más o menos simultánea con la invención de Frank S. Baldwin, de Estados Unidos, y T. Odhner, suizo viviendo en Rusia.
1890
Tabulating Machine Company
El censo de los Estados Unidos.
En 1880 el censo llevó siete años para ser completado , ya que todos los cálculos fueron hechos a mano en papel de periódico. Por el aumento de la población se imaginó que el censo de 1890 llevaría más de 10 años, entonces fue realizado un concurso para hallar el mejor método para realizar el cómputo de los resultados. Este concurso fue ganado por un empleado del Censo,Herman Hollerith, quien fundaría la Tabulating Machine Company, que luego se transformó en IBM. Herman tomó prestada la idea de Babbage de usar tarjetas perforadas (vea 1801) para hacer el sistema de memoria. Con este método usado en 1890, el resultado (62,622,250 personas) estuvo listo en sólo 6 semanas. Con el sistema de memoria el análisis de los resultados fue muy fácil pero, a pesar de ser más eficiente, el costo del Censo de 1890 fue un 198% mas costoso que el de 1880.
1941
Resultado de la 2da Guerra Mundial, la computadora Z3, construido por los alemanes, tenía como principal función la codificación de mensajes. Sin embargo fue destruida en Berlín dejándonos muy poca información sobre esta computadora.
1943
Colossus
Así como los alemanes, los ingleses también fueron en búsqueda de tecnologías para descifrar códigos secretos construyendo entonces el Colossus (Servicio de Inteligencia Británico). Poseyendo dimensiones gigantescas, el Colossus funcionaba por medio de válvulas llegando a procesar cerca de 5 mil caracteres por segundo. Fue inventado por Turing.
1944
Historia de la computación - Mark I
Mark I (Howard Aiken) fue la primer computadora electromecánica construida. Bastante diferente de las computadoras actuales, Mark I medía 18 metros de largo, dos metros de ancho y pesaba 70 toneladas.Estaba constituida por 7 millones de piezas móviles y su cableado alcanzaba los 800 Km. Con la llegada de las computadoras electrónicas Mark I fue inmediatamente sustituida.
1945
John Von Neumann, ingeniero matemático húngaro y naturalizado americano desarrolló un proyecto de computadora basado en la lógica, con almacenamiento electrónico de la información y de datos de programación. La computadora procesaría los datos de acuerdo con las necesidades del usuario, o sea, las instrucciones no vendrían predeterminadas. Más tarde esa computadora fue construida recibiendo el nombre de Edvac.
El primer BUG de computadora fue relatado por la Oficial Naval y Matematica Grace Murray Hopper, el BUG era una polilla dentro de la computadora, la cual hizo que la computadora tuviera un desperfecto en sus cálculos.
1946
ENIAC
John W. Mauchly y J. Prester Eckert Jr., junto con científicos de la Universidad de la Pensilvania, construyeron la primera computadora electrónica,conocido como ENIAC (Electronic Numerical Integrator and Calculator), tenía aproximadamente 18 mil válvulas, pesaba 30 toneladas y llegaba a consumir 150 KW. En contrapartida superaba mil veces la velocidad de las otras computadoras, llegando a realizar 5 mil operaciones por segundo.
1947
Presper Eckert y John Mauchly, pioneros en la historia de la computadora, fundaron la Cía. Eckert-Mauchly Computer Corporation, con el objetivo de fabricar máquinas basadas en sus experiencias como el ENIAC y el EDVAC.
1948
UNIVAC
La primera computadora comercial es inventada, llamada UNIVAC. John Bardeen, Walter Brattain y William Shockley de Bell Labs patentarían el primer transistor.

1949
Thomas Watson Jr. en una charla en un encuentro de ventas de IBM preanunció que todas las partes móviles en las computadoras serían sustituidas por componentes electrónicos en una década.
1951
El Univac fue la primera computadora comercializada. Proyectada por J. Presper Ecker y John Mauchly, ejecutaba 1905 operaciones por segundo y su precio llegó a US$ 1.000.000.
1952
Heinz Nixdorf fundó la Cía. Nixdorf Computer Corporation, en Alemania. Esta permaneció como una corporación independiente hasta su unión con Siemens, en 1990.
1953
IBM 701
La Internation Business Machines IBM lanza su primera computadora digital, la IBM 701. Como primera computadora de la marca comercializada, fueron vendidas 19 máquinas en tres años.


1954
Alan Turing
El genio de la matemática Alan Turing publicó el libro "On Computable Numbers" proponiendo cuestiones significativas sobre programación e inteligencia humana. Utilizó sus aplicaciones de lógica en el desarrollo del concepto de máquina Universal. Texas Instruments anunció el inicio de la producción de los transistores.







1955
Historia de la computación - Tradic
Anunciado por los laboratorios AT&T Bell, la Tradic fue la primera computadora transistorizada, teniendo aproximadamente 800 transistores en el lugar de los antiguos tubos de vacío, lo que le permitía trabajar con menos de 100 Watts de consumo de energía.

Historia de la Computadora PPT

Historia de la Robotica PDF

Historia de la Computadora Docx

Nanotecnologia


Nanotecnología
La nanotecnología es la manipulación de la materia a escala nanométrica. La más temprana y difundida descripción de la nanotecnología1 2 se refiere a la meta tecnológica particular de manipular en forma precisa los átomos y moléculas para la fabricación de productos a macroescala, ahora también referida como nanotecnología molecular. Subsecuentemente una descripción más generalizada de la nanotecnología fue establecida por la Iniciativa Nanotecnológica Nacional, la que define la nanotecnología como la manipulación de la materia con al menos una dimensión del tamaño de entre 1 a 100 nanómetros. Esta definición refleja el hecho de que los efectos mecánica cuántica son importantes a esta escala del dominio cuántico y, así, la definición cambió desde una meta tecnológica particular a una categoría de investigación incluyendo todos los tipos de investigación y tecnologías que tienen que ver con las propiedades especiales de la materia que ocurren bajo cierto umbral de tamaño. Es común el uso de la forma plural de "nanotecnologías" así como "tecnologías de nanoescala" para referirse al amplio rango de investigaciones y aplicaciones cuyo tema en común es su tamaño. Debido a la variedad de potenciales aplicaciones (incluyendo aplicaciones industriales y militares), los gobiernos han invertido miles de millones de dólares en investigación de la nanotecnología. A través de su Iniciativa Nanotecnológica Nacional, Estados Unidos ha invertido 3,7 mil millones de dólares. La Unión Europea ha invertido[cita requerida] 1,2 mil millones y Japón750 millones de dólares.3
Nano es un prefijo griego que indica una medida (10-9 = 0,000 000 001), no un objeto; de manera que la nanotecnología se caracteriza por ser un campo esencialmente multidisciplinar, y cohesionado exclusivamente por la escala de la materia con la que trabaja.
La nanotecnología definida por el tamaño es naturalmente un campo muy amplio, que incluye diferentes disciplinas de la ciencia tan diversas como la ciencia de superficies,química orgánicabiología molecularfísica de los semiconductoresmicrofabricación, etc.4 Las investigaciones y aplicaciones asociadas son igualmente diversas, yendo desde extensiones de la física de los dispositivos a nuevas aproximaciones completamente nuevas basadas en el autoensamblaje molecular, desde el desarrollo de nuevos materialescon dimensiones en la nanoescalas al control directo de la materia a escala atómica.
Actualmente los científicos están debatiendo el futuro de las implicaciones de la nanotecnología. La nanotecnología puede ser capaz de crear nuevos materiales y dispositivos con un vasto alcance de aplicaciones, tales como en la medicinaelectrónicabiomateriales y la producción de energía. Por otra parte, la nanotecnología hace surgir las mismas preocupaciones que cualquier nueva tecnología, incluyendo preocupaciones acerca de la toxicidad y el impacto ambiental de los nanomateriales,5 y sus potenciales efectos en la economía global, así como especulaciones acerca de varios escenarios apocalípticos. Estas preocupaciones han llevado al debate entre varios grupos de defensa y gobiernos sobre si se requieren regulaciones especiales para la nanotecnología.


miércoles, 23 de septiembre de 2015

La robotica en la ciencia ficcion

LA ROBÓTICA EN LA CIENCIA FICCIÓN


No obstante las limitaciones de las máquinas robóticas actuales, el concepto popular de un robot es que tiene apariencia humana y que actúa como un ser humano. Este concepto humanoide ha sido inspirado y estimulado por varias narraciones de ciencia ficción .Una de las primeras obras importantes a este concepto fue una novela de Mary Shelley, publicada en Inglaterra en 1817. con el título de Frankenstein, la narración se refiere a los esfuerzos de un científico, el doctor Frankenstein, para crear un monstruo humanoide que luego produjo estragos en la comunidad local. La narración ha sido popularizada en varias versiones a través de los años, plasmados en varias producciones cinematográficas. La imagen en la pantalla cinematográfica del monstruo de Frankenstein salió fuera de los planes de su bien intencionada creadora para producir una impresión duradera en las mentes de millones de personas. Esta impresión ha dado lugar a que los robots se asimilen a imágenes similares de ciencia y tecnología concierto peligro de locura homicida. Una obra checoslovaca publicada en el año de 1917 por Carel Capek, denominada ³Rossum´s Universal Robots´, da lugar al término robot. La palabra checa ³robota´ significa servidumbre o trabajador forzado, y cuando se tradujo al inglés se convirtió en el término robot. Dicha narración se refiere a un brillante científico llamado Rossum y su hijo, quienes desarrollan una sustancia química que es similar al protoplasma. Utilizan esta sustancia para fabricar robots, y sus planes consisten en que los robots sirven a la clase humana deforma obediente y para realizar todos los trabajos físicos. Rossum prosigue realizando mejoras en el diseño de los robots, eliminando órganos y otros elementos innecesarios, y finalmente desarrolla un ser ³perfecto´. El argumento experimenta un giro desagradable cuando los robots perfectos comienzan a no cumplir con su papel de servidores y se revelan contra sus dueños, destruyendo toda la vida humana.
Entre los escritores de ciencia ficción, Isaac Asimov ha contribuido con varias narraciones relativas a los robots, comenzando en 1939, y a él se le atribuye la definición del término robótica. La imagen de un robot que apareceen su obra es el de una máquina bien diseñada y con una seguridad garantizada que actúa de acuerdo con tres principios. Estos principios fueron denominados por Asimov las tres leyes de la robótica, y son:1. Un robot no puede actuar contra un ser humano o, mediante la inacción, permitir que un ser humano sufra daños.2. Un robot debe obedecer las órdenes dadas por los seres humanos, salvo que estén en conflicto con la primera ley.3. Un robot debe proteger su propia existencia a no ser que esté en conflicto con las dos primeras leyes. Varias películas cinematográficas y de televisión han añadido al saber popular de la robótica algunos robots que actúan de servidores amistosos y compañeros de aventuras en diferentes maneras. La película titulada ³The daythe Earth Stood Still´ de 1951, tenía como argumento una misión desde un planeta lejano enviado de la tierra en un platillo volante para intentar establecer las bases para la paz entre las naciones del universo.

El mercado de la robotica y las perspectivas futuras

EL MERCADO DE LA ROBÓTICA Y LAS PERSPECTIVAS FUTURAS


Las ventas anuales para robots industriales han ido creciendo en Estados Unidos a razón del 25% de acuerdo a estadísticas del año 1981 a 1992. El incremento de ésta tasa se debe a factores muy diversos. En primer lugar, hay más personas en la industria que tienen conocimiento de la tecnología y de su potencial para sus aplicaciones de utilidad. En segundo lugar, la tecnología de la robótica mejorará en los próximos años de manera que hará a los robots más amistosos con el usuario, más fáciles de interconectar con otro hardware y más sencillos de instalar.
En tercer lugar, que crece el mercado, son previsibles economías de escala en la producción de robots para proporcionar una reducción en el precio unitario, lo que haría los proyectos de aplicaciones de robots más fáciles de justificar. En cuarto lugar se espera que el mercado de la robótica sufra una expansión más allá de las grandes empresas, que ha sido el cliente tradicional para ésta tecnología, y llegue a las empresas de tamaño mediano, pequeño y por que no; las microempresas. Estas circunstancias darán un notable incremento en las bases de clientes para los robots.
La robótica es una tecnología con futuro y también para el futuro. Si continúan las tendencias actuales, y si algunos de los estudios de investigación en el laboratorio actualmente en curso se convierten finalmente en una tecnología factible, los robots del futuro serán unidades móviles con uno o más brazos, capacidades de sensores múltiples y con la misma potencia de procesamiento de datos y de cálculo que las grandes computadoras actuales. Serán capaces de responder a ordenes dadas con voz humana. Así mismo serán capaces de recibir instrucciones generales y traducirlas, con el uso de la inteligencia artificial en un conjunto específico de acciones requeridas para llevarlas a cabo. Podrán ver, oír, palpar, aplicar una fuerza media con precisión a un objeto y desplazarse por sus propios medios.
En resumen, los futuros robots tendrían muchos de los atributos de los seres humanos. Es difícil pensar que los robots llegarán a sustituir a los seres humanos en el sentido de la obra de Carel Kapek, Robots Universales de Rossum. Por el contrario, la robótica es una tecnología que solo puede destinarse al beneficio de la humanidad. Sin embargo, como otras tecnologías, hay peligros potenciales implicados y deben establecerse salvaguardas para no permitir su uso pernicioso.
El paso del presente al futuro exigirá mucho trabajo de ingeniería mecánica, ingeniería electrónica, informática, ingeniería industrial, tecnología de materiales, ingenierías de sistemas de fabricación y ciencias sociales. 18. Proyecto quetzalcoatl Introducción
La Sociedad actual se encuentra inmersa en una Revolución Tecnológica, producto de la invención del transistor semiconductor en 1951 ( fecha en la que salió al mercado ). Este acontecimiento ha provocado cambios trascendentales así como radicales en los ámbitos sociales, económicos, y políticos del orbe mundial.
Ésta Revolución da origen a un gran número de ciencias multidiciplinarias; este es el caso de la Robótica.La Robótica es una ciencia que surge a finales de la década de los 50´s, y que a pesar de ser una ciencia relativamente nueva, ha demostrado ser un importante motor para el avance tecnológico en todos los ámbitos ( Industria de manufactura, ciencia, medicina, industria espacial; etc.), lo que genera expectativas muy interesantes para un tiempo no muy lejano.
Sin embargo es en la Industria de Manufactura donde la Robótica encuentra un campo de aplicación muy amplio, su función es la de suplir la mano de obra del Hombre en aquellos trabajos en los que las condiciones no son las óptimas para este ( minas, plantas nucleares, el fondo del mar; etc.), en trabajos muy repetitivos y en inumerables acciones de trabajo.
Debido al alto costo que representa el automatizar y robotizar un proceso de producción, la tendencia actual en Robótica es la investigación de microrobots y robots móviles autónomos con un cierto grado de inteligencia, este último es el campo en el que se basa este proyecto de investigación.
Por lo anteriormente expuesto se explica la necesidad y la importancia de que Institutos de Investigación, Centros Tecnológicos, la Industria Privada en coordinación con las Universidades se den a la tarea de destinar recursos tanto económicos y humanos para aliviar el rezago tecnológico que el país padece.
Cabe hacer mención que este proyecto fue financiado por el Centro de Investigación y Estudios Avanzados del IPN (CINVESTAV). ¿ QUE ES UN ROBOT ?
Un robot puede ser visto en diferentes niveles de sofisticación, depende de la perspectiva con que se mire. Un técnico en mantenimiento puede ver un robot como una colección de componentes mecánicos y electrónicos; por su parte un ingeniero en sistemas puede pensar que un robot es una colección de subsistemas interrelacionados; un programador en cambio, simplemente lo ve como una máquina ha ser programada; por otro lado para un ingeniero de manufactura es una máquina capaz de realizar un tarea específica. En contraste, un científico puede pensar que un robot es un mecanismo el cuál él construye para probar una hipótesis.
Un robot puede ser descompuesto en un conjunto de subsistemas funcionales: procesos, planeación, control, sensores, sistemas eléctricos, y sistemas mecánicos. El subsistema de Software es una parte implícita de los subsistemas de sensores, planeación, y control; que integra todos los subsistemas como un todo.
En la actualidad, muchas de las funciones llevadas acabo por los subsistemas son realizadas manualmente, o de una forma off-line, pero en un futuro las investigaciones en estos campos permitirán la automatización de dichas tareas.
El Subsistema de Procesos incluye las tareas que lleva acabo el robot, el medio ambiente en el cual es colocado, y la interacción entre este y el robot. Este es el dominio de la ingeniería aplicada. Antes de que un robot pueda realizar una tarea, ésta debe ser buscada dentro de una secuencia de pasos que el robot pueda ejecutar. La tarea de búsqueda es llevada acabo por el Subsistema de Planeación, el cuál incluye los modelos de procesos inteligentes, percepción y planeación. En el modelo de procesos, los datos que se obtienen de una variedad de sensores son fusionados (Integración Sensorial) con modelos matemáticos de las tareas para formar un modelo del mundo. Al usar este modelo de mundo, el proceso de percepción selecciona la estrategia para ejecutar la tarea. Estas estrategias son convertidas dentro de los programas de control de el robot durante el proceso de planeación.
Estos programas son ejecutados por el Subsistema de Control; en este subsistema, los comandos de alto nivel son convertidos en referencias para actuadores físicos, los valores retroalimentados son comparados contra estas referencias, y los algoritmos de control estabilizan el movimiento de los elementos físicos.
Al realizar ésta tarea los mecanismos son modelados, el proceso es modelado, la ganancia de lazo cerrado puede ser adaptada, y los valores medidos son utilizados para actualizar los procesos y los modelos de los mecanismos.
Desde el subsistema de control se alimentan las referencias de los actuadores al Subsistema Eléctrico el cuál incluye todos los controles eléctricos de los actuadores. Los actuadores hidráulicos y neumáticos son usualmente manejados por electroválvulas controladas. También, este subsistema contiene computadoras, interfaces, y fuentes de alimentación. Los actuadores manejan los mecanismos en el Subsistema Mecánico para operar en el medio ambiente, esto es, realizar una tarea determinada. Los parámetros dentro del robot y del medio ambiente son monitoreados por el Subsistema de Sensores; ésta información sensórica se utiliza como retroalimentación en las ganancias de lazo cerrado para detectar potencialmente las situaciones peligrosas, para verificar que las tareas se realizan correctamente, y para construir un modelo del mundo.
VEHÍCULOS
La mayoría de los robots usan ya sea ruedas o extremidades para moverse. Estas son usualmente montadas sobre una base para formar un vehículo, también se montan sobre ésta base, el equipo y los accesorios que realizan otras funciones. Los robots más versátiles son los robots "serpentina"; llamados así por que su locomoción se inspira en el movimiento de las serpientes; se pueden utilizar en terrenos subterráneos y de espacios reducidos, donde el hombre no tiene acceso y el medio ambiente no es el más propicio, como en las minas, túneles y ductos.
Algunos robots móviles tienen brazos manipuladores, esto es debido a sus funciones, y por otro lado la problemática de carecer de brazos idóneos; que tienen que ser pequeños, fuertes, eficientes y baratos. Un problema al cuál se enfrentan los diseñadores de robots, es la generación y almacenado de la energía; los cordones restringen el movimiento pero proveen energía ilimitada.
En contraste los robots con libre movimiento son limitados por su cantidad de energía que puedan almacenar y requieren de comunicación inalámbrica.
En la medida que los robots sean más sofisticados, serán utilizados en un mayor número de aplicaciones, muchas de las cuáles requieren movilidad. En algunas aplicaciones industriales, la necesidad de movilidad es eliminada por la construcción de células de trabajo alrededor del robot, de ésta manera un robot fijo puede dar servicio a varias máquinas. En estos sistemas de manufactura flexible (SMF) las partes son llevadas de una célula de trabajo a otra por vehículos autómatas. En ocasiones para limitar el movimiento del robot se monta sobre rieles para así llegar hasta las células de trabajo con menos complicaciones.
La movilidad es usualmente llevada acabo mediante ruedas, rieles ó extremidades. Los robots con extremidades pueden andar en terrenos más rugosos que los robot con rodado, pero el problema de control es más complejo. Los robots pueden alcanzar movilidad volando. Algunos se deslizan ligeramente sobre al tierra sobre conductos de aire; otros usan levitación magnética, para lo que se requieren superficies especialmente preparadas.
Los robots diseñados para usos en el espacio exterior no son afectados por la gravedad; se elimina el problema de levitación, pero se incrementa el problema del control y la estabilidad.
VEHÍCULOS DE RODADO
Mientras la gente y la mayoría de los animales se desplaza sobre extremidades, la mayoría de las máquinas móviles utilizan ruedas. La ruedas son más simples de controlar, tienen pocos problemas de estabilidad, usan menos energía por unidad de distancia de movimiento y son más veloces que las extremidades. La estabilidad se mantiene al fijar el centro de gravedad de el vehículo en triangulación de los puntos que tocan tierra. Sin embargo, las ruedas solamente pueden utilizarse sobre terrenos relativamente lisos y sólidos. Si se quiere utilizar el robot en terrenos rugosos las ruedas tienen que tener un tamaño mayor que los obstáculos encontrados.
El arreglo más familiar para las ruedas de un vehículo es el utilizado por los automóviles. Cuatro ruedas son colocadas en las esquinas de un rectángulo. La mayoría de estos vehículos tiene maniobrabilidad limitada debido a que tienen que avanzar para poder dar vuelta. También se requiere de un sistema de suspensión para asegurar que las ruedas estén en contacto con la superficie durante todo el tiempo. Cuando el robot se desplaza en línea recta las cuatro ruedas tienen que girar a la misma velocidad, en cambio al momento de dar vuelta las ruedas interiores giran más lento que las ruedas exteriores.
En un robot móvil, estos requerimientos son alcanzados por un buen diseño mecánico y mediante el control de la velocidad de las ruedas de dirección independiente. Sin embargo las imprecisiones que se presentan para alcanzar una trayectoria definida son causadas por factores mecánicos, deslizamiento de las ruedas, dobleces en los ejes de dirección, y desalineamiento de las ruedas. ¿EN QUE CONSISTE EL PROYECTO QUETZALCÓATL?
OBJETIVOS
  1. Construir el prototipo de un Robot Móvil Autónomo para propósitos didácticos y/o para prueba y verificación de algoritmos de control. Y dejar, con este proyecto de investigación, las bases para próximas mejoras en la optimización del prototipo. 
  2. Crear nuevos investigadores que cuenten con experiencia y habilidad en el desarrollo de investigaciones y realización de proyectos de este tipo.
  3. Motivar y crear bases para el desarrollo de más proyectos didácticos y/o aplicados a la industria.
  4. Crear vínculos con otras instituciones de enseñanza superior en el Estado con la Universidad de Guadalajara.
METODOLOGÍA DEL DISEÑO 
El proyecto consta básicamente de cuatro etapas; Etapa de Investigación, Etapa de Síntesis Informativa, Etapa de Diseño y Construcción, Etapa de pruebas, calibración y control. A).- Etapa de Investigación.
a) Adquisición de Bibliografía.
b) Búsqueda de las fuentes de información específicas de aquellos elementos que constituyen el prototipo.
c) Investigación de las variables que intervienen en el proceso de control del prototipo.
d) Adquisición y estudio del software para el desarrollo e implementación de los algoritmos de control. B).- Etapa de Síntesis de la Información.

Ésta etapa se basa en la etapa anterior y da como resultado una serie de elementos que son necesarios para el desarrollo de las siguientes etapas de el proyecto. C).- Etapa de Diseño y Construcción.
En ésta etapa se aplica toda la información que se recaba y consulta, y que el diseño del prototipo requiere para el cumplimiento de los objetivos planteados anteriormente. En base a estos lineamientos se construyen las piezas que conforman el prototipo, con el material y componentes adecuados. D).- Etapa de Pruebas, Calibración y Control.
Ésta es la etapa final, se adoptan las medidas necesarias para alcanzar los objetivos planteados. Se aplican los algoritmos de control y se prueban hasta conseguir el resultado esperado. DESCRIPCIÓN DEL PROYECTO
El sistema propuesto consta de :
Un Robot Móvil Autónomo.
Se encuentra formado por 2 módulos unidos entre sí mediante una unión mecánica, la locomoción del prototipo se realiza por medio de dos ruedas en cada eslabón, en donde cada una de las que son parte de el primer eslabón cuenta con un actuador ( motorreductor de DC ).
Los servosistemas se componen de un Driver tipo Chopper con control en lazo cerrado de velocidad, para cada actuador en forma independiente.
La alimentación del Robot se realiza mediante módulos de baterías de 12 V y los voltajes se adaptan por medio de convertidores DC-DC.
La información del entorno donde se mueve el Robot se recaba mediante sensores ultrasónicos, los cuales cuentan con una tarjeta de interfaz, la cual pasa dicha información al Cerebro del Robot.
Debido a la complejidad del proyecto, este se descompone en un conjunto de subsistemas que son: - Subsistema Mecánico.
Este subsistema incluye los eslabones, las uniones mecánicas y el módulo que contiene a todo el sistema que permite que las ruedas giren ( ruedas, ejes, coples, baleros). - Subsistema Eléctrico
Este subsistema incluye los servosistemas ( Drivers ), las interfaces entre los sensores, los drivers y la computadora, así como las fuentes de alimentación.

-Subsistemas de Sensores
Ésta incluye los sensores de velocidad de tipo incremental, y sensores ultrasónicos para la exploración del medio ambiente. - Subsistemas de Procesos, Planeación y Control
En este subsistema se encuentran el control de los motores y todas las tareas que realiza el prototipo interiormente y exteriormente al interactuar con el medio ambiente.

La robotica cuantica

LA ROBÓTICA CUÁNTICA

La robótica cuántica avanza. Los científicos intentan desarrollar instrucciones lógicas suficientemente flexibles para que los ordenadores sean capaces de aprender por si mismos y de esta manera prever con mayor precisión. El 'cuando tu vas yo vengo' será posiblemente el patrón de 'pensamiento' cibernético más usual en el futuro de las relaciones con los humanos, los pilares del próximorobot humanoide se están construyendo. A imagen y semejanza del ser humano.
Investigadores de la Universidad Complutense de Madrid(UCM) y la Universidad de Innsbruck (Austria) publican un trabajo en la revista 'Physical Review X' donde auguran que la computación cuántica abre nuevos desarrollos en el campo de la robótica y en aquellos relacionados con la Inteligencia Artificial(IA). Por primera vez estos científicos han demostrado que las máquinas cuánticas se adaptan a situaciones donde las clásicas no terminan los procesos de aprendizaje y respuesta. Estos investigadores afirman que las máquinas cuánticas pueden responder de forma óptima y más rápida a la hora de actuar frente al entorno que las rodea, publica Sinc.

APUESTA DE GOOGLE Y DE LA NASA

La denominada 'inteligencia artificialcuántica' (Quantum AI) es un ámbito en el que la compañía Googleha comenzado a invertir millones de dólares mediante la creación de un laboratorio especializado en colaboración con la NASA. Ante el tamaño de los patrocinadores, pocos dudan del éxito de las investigaciones.
¿Pero que es eso de la robótica cuántica? Se basa en arquitecturas lógicas que utilizan algoritmos más veloces y flexibles que los habituales, una vuelta de tuerca revolucionaria frente a la lógica del 'if-then'. Los computadores cuánticos de D-Wave Systems para Google, por ejemplo, son sistemas que cuestan en torno a los 10 o 15 millones de dólares, manejan 512 qbits y son 3.600 veces más rápidos que un computador convencional.

APLICACIONES CUÁNTICAS

Esa monstruosa potencia de cálculo se destina al desarrollo de aplicaciones que permitirán a Google servicios de búsqueda más efectivos. La idea es que el sistema sea capaz de adelantarse a los deseos del usuario y ofrecerle información antes incluso de que la demande. Eso puede hacerse a través de la adaptación al usuario, el conocimiento del historial, la posición geográfica, informaciones generadas en el pasado, la acumulación de los patrones de comportamiento anteriores, etcétera. El sistema dotado de un motor cuántico es capaz de entrelazar información con cierta iniciativa, es capaz de predecir más allá de los denominados programas expertos que símplemente analizan la información mediante secuencias lógicas tras respuestas. Algunos científicos apuntan que estos nuevos sistemas cuánticos serán capaces de reconocer la voz y procesar el lenguaje natural por esa flexibilidad 'tan humana'.

ROBOT CON CAPACIDAD DE ADAPTACIÓN

"En el caso de entornos muy exigentes e 'impacientes', el resultado es que el robot cuántico puede adaptarse y sobrevivir, mientras que el robot clásico está destinado a desfallecer", explican G. Davide Paparo y Miguel A. Martín-Delgado, los dos investigadores de la UCM que han participado en el estudio.

APRENDIZAJE ROBÓTICO

Su trabajo teórico se ha centrado en acelerar de forma cuántica uno de los puntos más difíciles de resolver en informática: el aprendizaje robótico (machine learning, en inglés), que se utiliza para elaborar modelos y predicciones muy precisas. Se aplican también para conocer la evolución del clima, las enfermedades o en ese referido desarrollo de los motores de búsqueda por internet. "Construir un modelo es realmente un acto creativo, pero los ordenadores clásicos no son buenos en esto –dice Martin-Delgado–. Ahí es donde entra en juego la computación cuántica. Las ganancias que aporta no son solo cuantitativas en cuanto a mayor velocidad, también cualitativas".

TRUFAR ROBÓTICA CUÁNTICA Y ROBOTS HUMANOIDES

Otros desarrollos en el campo de la robótica humana se acercan más a lo anunciado en la película 'Blade Runner' (vale, sí, aquellos erán robots fruto de la ingeniería genética). Aquellos que visiten el museo de la ciencia de Tokio podrán ver el grado de sofisticación de la humanización de robots (ver vídeo). Trufar la computación cuántica con esos robots de aspecto humano hará que la visión del 2019 de la película protagonizada por Harrison Ford esté más cerca que nunca, aunque todavía queda mucho por hacer.